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Abstract 
The analysis of the full-width at half-maximum 
(FWHM) of X-ray diffraction profiles measured with 
monochromatic synchrotron radiation enables the 
evaluation of the mosaic spread of the sample. This 
method presupposes the high collimation of syn- 
chrotron radiation ( F W H M - 2 0 "  of arc). As an 
example the results from a CaF2 crystal sphere (90 ~m 
diameter) are presented. The reflections strongly 
affected by extinction show a significantly greater 
FWHM, thereby indicating at once the need for an 
extinction correction. A mosaic spread of 75(3)" of 
arc was determined from the FWHM of all reflections 
recorded in the step-scan mode, which was used to 
correct the secondary extinction and to estimate the 
radius R of the mosaic blocks [R =4  (1) I~m]. 

Introduction 
X-ray diffraction experiments can be interpreted by 
the dynamical or by the kinematical theory. The 
dynamical theory is used for perfect crystals whereas 
the kinematical theory is suitable for strongly imper- 
fect crystals because it neglects the multiple scatter- 
ing. The crystal model for the latter theory is the 
mosaic crystal (Darwin, 1922). The integrated reflec- 
tion power R can be calculated by both theories. In 
general, the theoretical results are related to the 
experimental value R,, by 

Rkin > Rr, > Rdyn 
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because Rm is a function of the degree of crystal 
imperfection. The dynamical value approaches the 
kinematical one if the thickness of the crystal tends 
to zero. In the case of large single crystals with plane 
surfaces the kinematical approximation can be used 
for grazing incidence (Mathieson, 1977a). In general, 
the kinematical theory can be used for crystals with 
diameter smaller than the extinction length L 
(Zachariasen, 1945). 

L= ro 1Vc[IFh]A Cp] -1 (1) 

with ro the classical electron radius, Vc the volume 
of the elementary cell, A the wavelength, Fh the 
structure amplitude, Cp the polarization factor (1 or 
cos 20B for polarization perpendicular and parallel 
to the diffraction plane, respectively, 0B is the Bragg 
angle). 

In crystal structure analysis one is anxious to reduce 
extinction and there are different ways to achieve this 
experimentally: 

1. Use of short wavelengths (3,-rays) (Schneider, 
1983). 

2. Measurements in parallel-polarization geometry 
with Bragg angles near 7r/4 (Mathieson, 1977b). 

3. Reduction of crystal size (Bachmann, Kohler, 
Schulz, Weber, Kupcik, Wendschuh-Josties, Wolf & 
Wulf, 1983). 

The secondary extinction is caused by the mosaicity 
of the sample; this latter property is characterized by 
the spread described by the orientation distribution 
function. If a Gaussian distribution is assumed, the 
so-called extinction coefficient g is related to the 
mosaic spread ws (the FWHM of the distribution 
function) by 

g = [ l n  2/ (2 7r) ]I/2w-j ~. (2) 

If g is known, the integrated reflection power R,,, can 
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be calculated from the kinematical value Rk~n 

Rm --- Rkin exp (--gRkin). 

In structure refinements with X-ray diffraction data 
the extinction coefficient (and conversely the mosaic 
spread) is determined from the measured intensity 
maxima according to various models (Zachariasen, 
1967, 1968; Becker & Coppens, 1974, 1975; Cooper 
& Rouse, 1970). The aim of the present work is an 
experimental measurement of the mosaic spread prior 
to the refinement and without any additional experi- 
ments (such as rocking-curve measurements with a 
double-crystal diffractometer) and the correction of 
the secondary extinction caused by this mosaic 
spread. 

Basic considerations 

In single-crystal diffractometry the reflection profile 
is affected by the divergence of the incident radiation, 
the wavelength range and the properties of the 
sample. If the FWHM of the reflection profile, w, is 
plotted against the Bragg angle 0B the following 
dependence is found: 

W 2 - -  A2+ B 2 tan 20B. (3) 

In the present study the coefficient B is mainly deter- 
mined by the relative wavelength range AA/A and A 
is to first approximation a function of the beam diver- 
gence wa and the mosaic spread ws, which are 
independent of the Bragg angle 0B. The deconvolution 
of beam divergence and mosaic spread requires a 
knowledge of both distribution functions. 

The beam divergence can be determined by measur- 
ing reflection profiles of a perfect crystal, e.g. silicon 
or some other crystals free of dislocations. The 
FWHM of the diffraction profile as measured with a 
nearly monochromatic beam, AA/A ~--0, can be given 
by 

wE= [(zad/ d)2ayn + (Ad/ d)2strain 
2 + (AA/A)2] tan 2 OB+Ws+W2~. (4) 

(Ad/d)ayn is the virtual lattice-parameter variation 
due to the FWHM of the rocking curve of a perfect 
crystal given by the dynamical theory of X-ray diffrac- 
tion. (Acl/d)strain corresponds to the lattice-parameter 
variation caused by the internal strain, wd is the 
divergence of the incident beam (FWHM). 

For perfect crystals (Ad/d)strain and w, are zero 
and the dynamical rocking curve is one or more orders 
of magnitude smaller than the beam divergence used 
in X-ray diffraction configurations, i.e. the intersec- 
tion of the w-OB curve with the ordinate (0~ = 0 °) 
represents the maximum value of the beam diver- 
gence. In the case of imperfect crystals the distribu- 
tion function for the mosaicity is unknown and there- 
fore the deconvolution cannot be done exactly. Only 
a raw value of the mosaic spread can be given. 

Results 

The measurements were carried out with the five- 
circle diffractometer (Kupcik, Wulf, Wendschuh, 
Wolf & Paehler, 1983) at HASYLAB (DESY, Ham- 
burg). The operating parameters of the storage ring 
DORIS II were 3.7 GeV and 60-20 mA. The X-ray 
beam was monochromatized to A = 0.917 (1) A by a 
flat Ge (111) double monochromator. In order to 
reduce the influence of polarization on the diffracted 
intensities the diffraction plane was oriented vertically 
with respect to the electron orbit in the storage ring. 
The spherical CaF2 crystal 90 ~m in diameter is the 
one used in previous experiments (Bachmann, 
Kohler, Schulz & Weber 1985). The FWHM can be 
obtained directly from the step-scan profiles of the 
reflections measured in the to or to-20 mode. No 
significant difference is found in the FWHM for either 
mode. The step width was usually 0.003 ° . In the case 
of very sharp peaks of the perfect silicon crystal the 
step width was reduced to 0.001 °. Both A and B could 
be determined by a least-squares fit based on (3) to 
the experimental results. 

It is remarkable that the strongest reflections 111 
and 220 have a FWHM that is significantly greater 
than expected from the least-squares fit. This devi- 
ation is caused by extinction. The value B = 5 x 10  - 4  

found in this fit is of the same order of magnitude as 
the theoretically expected wavelength range produced 
by the double monochromator. The extrapolation 
0B~0 gives A = 7 9 "  for the 90 ~m CaF2 crystal 
(Fig. 1). 

A perfect silicon crystal with a polished (111) sur- 
face was used for the estimation of the beam diver- 
gence wa. The reflection profiles of the symmetrical 
Bragg reflections 111,333,444 and 555 were measured 
with a beam diameter of 0.1 ram. From the W-OB plot 
given in Fig. 2 it follows that B = 4.5 x 10 -4 and A = 
24" of arc. In order to simulate the influence of the 
crystal size the experiments with the perfect silicon 
crystal were carded out with different cross sections 
of the X-ray beam (0.1, 0.2, 0.5 and l m m  in 
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Fig. 1. FWHM of the reflection profiles, w, as a function of the 
Bragg angle OB for the 90 p.m CaF2 crystal (synchrotron radi- 
ation, A = 0.917/~). The error bars result from the averaging 
among symmetrically equivalent reflections. 
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diameter). These measurements were done while 
DORIS II opera teda t  5.27 GeV and 25-12 mA. The 
double monochromator was also set to h = 0.917 A, 
but the misadjustment of the second crystal was varied 
as compared to the experiment at 3.7 GeV in order 
to suppress higher harmonics. Fig. 3 summarizes the 
dependence of A on the diameter of the X-ray beam. 
The divergence of the synchrotron radiation given by 
Beimgraben, Graeff, Hahn, Knabe, Koch, Kunz, 
Materlik, Saile, Schmidt, Sonntag, Spriissel, Weiner 
& Zietz (1981) is in good agreement with the value 
of A extrapolated to beam diameter zero. 

Discussion 

Beam divergence Wa and mosaic spread w~ can only 
be separated to a limited degree since the distribution 
functions are unknown and the deconvolution can 
therefore not be carded out exactly. In the case that 
both contributions are of the same order of magnitude 
the mosaic spread can be approximated by 

w~ = (A2-- W2d) '/2. (5) 

The mosaic spread of the 90 Ixm CaF2 crystal then 
amounts to 75". If a Gaussian distribution is assumed 
one obtains g = 0.9 x 103 by means of (2). 

In structure investigations with a conventional X- 
ray tube and crystal monochromator the information 

on the mosaic spread is hidden by the beam diver- 
gence, which lies in the range from 5 to 10'. In this 
case a separation of the two contributions is hardly 
feasible. 

Concerning its applicability, the method described 
must be limited to experimental situations in which 
not all reflections are affected by extinction. Other- 
wise the analysis of the w-OB plot is not possible. 
Such an example is shown in Fig. 4. These are results 
from the same 90 Ixm CaF2 crystal as used in the first 
experiment, but with the wavelength of the syn- 
chrotron radiation changed to 1.714,~. No unique 
dependence of w on On can be discerned. On the 
other hand, Fig. 5 shows results of a previous investi- 
gation of a 6 I~m CaF2 crystal with synchrotron radi- 
ation at the wavelength A =0.91 A (Bachmann, 
Kohler, Schulz & Weber, 1985). In contrast to the 
experiments discussed above, the diffraction plane 
was parallel to the plane of the electron orbit in the 
storage ring. This leads to low intensities for Bragg 
angles near 45 ° because of the polarization of the 
radiation. In the analysis of the FWHM no problems 
arise as long as the reflection profiles can be measured 
with good counting statistics. It can clearly be seen 
in Fig. 5 that the influence of extinction is very low. 
Also, the strongest reflections are in good agreement 
with (3). Unfortunately, the beam divergence was not 
estimated by an experiment with a perfect single 
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Fig. 2. Plot of  w against 0o for a perfect silicon crystal (h = 
0.917/~, beam diameter 0.1 mm). 
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Fig. 3. FWHM of the reflection profiles of the perfect silicon crystal 
extrapolated to 0B = 0 [this corresponds to A in (3)] as a function 
of  the diameter of  the incident synchrotron X-ray beam (h = 
0.917 ,~). 
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Fig. 4. Plot o f  w against 8B for  the 90 i~m CaF  2 crystal at A = 
1.714 ~ .  Ow ing  to strong ex t inc t ion  no un ique func t ion  can be 
derived. 
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Fig. 5. Plot of  w against 0 R for the 6 gm Ca F 2 crystal (A = 0.91 ~).  
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crystal. The least-squares fit gives B = 6 x  10 -4  and 
A = 77". It can be concluded that the mosaic spread 
of the 6 lxm crystal is of the order of 70", but the 
reflection profiles are often divided into separate 
peaks. So the assumption of an analytical distribution 
function is only a rough approximation. This can also 
be seen in the correlation coefficient r of the fit based 
on (3). The function w = a + b tan 0B gives a better 
r value, but this relation is outside the usually accep- 
ted treatment. The estimated value of ws especially 
in the case of the small crystal should be seen as the 
maximum value. 

In general, the extinction parameter g is dependent 
on the crystal orientation (Coppens & Hamilton, 
1970). This anisotropy can be revealed by a corre- 
sponding analysis of the FWHM. The variation in 
the FWHM of different but symmetrically equivalent 
reflections is the origin of the relatively large error 
bars in the figures. 

Extinction correction 

The Bragg intensities measured on the 90 ~m CaF2 
sphere were used for structure refinements including 
secondary extinction of type I (Bachmann et al., 
1983). The refinements resulted in a mosaic spread 
of 28" for 0.91 A synchrotron radiation and 40" for 
Mo Ka radiation. These values deviate significantly 
from each other if a standard deviation of 5" is 
assumed. They are in disagreement with the experi- 
mentally determined mosaic spread of 75(3)". The 
reason for the differences between these three values 
lies most probably in the way the extinction was 
corrected in the structure refinements. The correction 
factor Y for an individual intensity measurement is 
applied in the form 

I~=I , , , /Y  (6) 

with Ic and I,, the corrected and measured intensities 
respectively. Y values for both primary and secondary 
extinction are calculated in the form (Becker & 
Coppens, 1974) 

Y = { l + a x + A ( O ) x 2 / [ l + B ( O ) x 2 ] }  -u2. (7) 

The coefficients a, A(O), B(O) are different for 
primary and secondary extinction. However, their 0 
dependence is similar. Therefore, extinction effects 
can usually be corrected by refining only secondary 
extinction, which absorbs in this way the influence 
of the primary extinction. The calculated mosaic 
spread is too small in such cases. Furthermore, the 
mosaic spreads calculated from intensity measure- 
ments at two wavelengths differ from each other. This 
is the situation found in our refinements and experi- 
ments. Therefore, we may assume that our intensity 
measurements are influenced by both primary and 
secondary extinction. 

To check this hypothesis we carded out additional 
structure refinements with the intensity data of the 
90 txm CaF2 sphere, which were used by Bachmann, 
Kohler, Schulz & Weber (1985). The intensity data 
were corrected for primary extinction by (7) for radii 
ranging from R = 1 to R =6 ~m. These corrected 
intensities were then used for structure refinements 
including secondary extinction for type I in the same 
way as in Bachmann et al. (1985). Structure par- 
ameters and R values did not change significantly 
compared to those of Bachmann et al. (1985), except 
for the refined mosaic spread. Fig. 6 displays these 
combinations of domain sizes and mosaic spreads for 
the synchrotron radiation and the Mo Ka radiation. 
To the measured mosaic spread of 75" belongs a 
domain radius of R = 3 and 5 ixm for the Mo Ka 
radiation and the synchrotron radiation (A - 0.91 A), 
respectively. The average of R = 4 Ixm is reasonable 
for a crystal with rather high perfection. We have 
now a unique view of the crystal perfection of the 
90 ~m CaF2 sphere. It is composed of crystallites with 
about 4 Ixm radius, which have a mosaic spread of 75". 

These values make it very probable that the 
intensities measured with the 6 Ixm crystal can be 
considered as free of extinction effects. As shown 
above, it has a mosaic spread of approximately 70". 
Therefore, secondary extinction can be neglected. The 
same must hold for the primary extinction: The crys- 
tallites have to be considerably smaller than 4 ~m in 
radius, otherwise we could not observe the typical 
diffraction profile of a distribution function. [A typi- 
cal reflection profile of the 6 txm crystal is shown by 
Bachmann et at. (1983).] It follows that the crystallites 
probably have sizes smaller than the extinction 
lengths. The reason for the reduction of the domain 
sizes lies in the relative increase of the surface region 
for the 6 txm crystal compared to the 90 I~m sphere. 
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Fig. 6. Dependence of the refined mosaic spread on the applied 
correction for primary extinction for the 90 txm CaF2 crystal. 
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Abstract 

The determination of the optimal transformation to 
superpose two sets of points has many applications 
to the analysis of structures of proteins and nucleic 
acids. A new formulation of this problem is presented, 
which reduces it to the unconstrained maximization 
of a function of a single variable. This method is 
currently being applied in investigations of common 
substructures of proteins. 

1. Introduction 

The superposition of two coordinate sets is the basis 
of a number of techniques for the analysis and 
comparison of molecular structures. Considerable 
effort has been made to develop fast algorithms 
(McLachlan, 1972; Diamond, 1976; Kabsch, 1976, 
1978; McLachlan, 1979, 1982; Mackay, 1984; Ken- 
Knight, 1984). 

Several etficient algorithms are known, and pro- 
grams based on them are already fast enough for 
calculations in which only a few superpositions are 
required. However, in searching two or more protein 
structures for common substructures, a very large 
number of superpositions are required to test all 
combinations of segments from each pair of struc- 
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0108-7673/86/020110-04501.50 

tures. Such analyses can sometimes be organized to 
superpose a succession of related substructures, so 
that the optimal transformation determined for one 
superposition may be nearly optimal for the next. In 
this case, optimization methods make it convenient 
to apply the results of one calculation to speed up 
the next. The method described here, a development 
of those used by McLachlan (1972, 1982), has this 
feature. 

2. Statement of the problem 

This section follows McLachlan's analysis very 
closely (McLachlan, 1972; cf. Golub & Van Loan, 
1983). Let xi, i = 1 , . . . ,  N, and yi, i = 1 , . . . ,  N, be two 
sets of points in 3-space. We wish to superpose them 
by means of a rigid-body motion of the yi into the 
set y[ such that the sum of the squares of deviations 

N 
D =  E (x,-Y',) 2 

i=1 

is minimized. Any rigid-body motion in 3-space may 
be decomposed into a rotation and a translation. The 
optimal translation is that which brings the mean 
positions (colloquially, 'centers of gravity') of the two 
sets into coincidence. We therefore may assume 
without loss of generality that the mean positions of 
the two sets of points coincide at the origin. The 
problem is to determine the proper rotation matrix 
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